

191 Vertebral Column Quantitative Susceptibility Mapping using Joint Background Field Removal and Dipole Inversion

Maximilian N. Diefenbach¹, Anh Van², Jakob Meineke³, Andreas Scharr⁴, Jan S. Kirschke⁴, Alexandra Gersing¹, Thomas Baum⁴, Benedikt Schwaiger¹, Dimitrios C. Karampinos¹

¹Department of Diagnostic & Interventional Radiology, Technical University of Munich, Munich, Germany ²Institute of Medical Engineering, Technical University of Munich, Garching, Germany ³Philips Research, Hamburg, Germany ⁴Section of Neuroradiology, Technical University of Munich, Germany

Declaration of

Financial Interests or Relationships

Speaker Name: Maximilian N. Diefenbach

I have the following financial interest or relationship to disclose with regard to the subject matter of this presentation:

Company Name: Philips Healthcare Type of Relationship: Grant Support

- [1] Wright et al. Journal of Bone and Mineral Research 29.11 (2014), pp. 2520–2526. [2] Hernlund et al. Archives of Osteoporosis, 8(1-2), 136 (2013). doi:10.1007/s11657-013-0136-1
- → strong need for **osteoporosis screening**

 Treatment possible for early diagnosis Mapping (QSM)

Results

Discussion

Quantitative Susceptibility

Methods

пп

• High Prevalence:

Background

*I*RI

•

Osteoporosis

~ 1 in 3 post-menopausal women in developed countries^{1,2}

Definition: increased bone weakness \rightarrow fractures

 \rightarrow great economic burden on health care

Diefenbach et al., ISMRM 2016, #677; Diefenbach et al., ISMRM 2017, #850; Diefenbach et al., ISMRM 2018, #533

*/commons.wikimedia.org/wiki/Category:Osteoporosis 4

Purpose

To develop a method for trabecular bone susceptibility mapping in in the spine and to report initial results

Challenges for spine QSM

- large FOVs \rightarrow scan time/voxel size trade-off
- respiratory motion \rightarrow artefacts
- presence of fat \rightarrow modulations MR-signal evolution
- cropped imaging object
- variable coil sensitivities \rightarrow invisible parts of the imaging object

inside the FOV

- complex background fields
- cortical bone, air inclusions \rightarrow signal voids in non-UTE images

MRI
Background
Methods
Results
Discussion
Summary
TIM

Time-interleaved multi-gradient-echo sequence (TIMGRE)
Time-interleaved multi-gradient

TIMGRE: hybrid multi-echo multi-acquisition sequence

Scan time

[*] Hernando et al., MRM, 59(3), 571–580 (2008). doi: 10.1002/mrm.21522

Field-to-susceptibility inversion

Joint Background Field Removal (BFR) + Dipole Inversion (DI)

Consecutive BFR + DI

- Manual definition of background mask
- Laplacian Boundary Value Method [**] + MEDI[***]

[*] Chatnuntawech et al., NMR Biomed, 30(4), 3570 (2016). doi: 10.1002/nbm.3570 [**] Zhou et al., NMR Biomedicine, 27(3), 312–319 (2014). doi: 10.1002/nbm.3064

In vivo experiments

Lumbar spine

5 patients

2 healthy volunteers

СТ	
----	--

Sequence Parameter	Value
Field strength	3 T
Number of echoes	6 (2 interleaves)
TE1/delta TE/TR	6.9/1.12/0.9 ms
Voxel size	1.8 mm isotropic
FOV	220 x 220 x 80 mm ³
Flip angle	3 deg
Scan time	3:03.2 min
Freq. enc. direction	anterior-posterior
coils	body + 16 ch.

• Feasibility of susceptibility mapping in the lumbar spine

Graph cut field mapping

TIMGRE

freedom in experimental design

field map water-fat speparation + field map unwrapping Field-to-suscept. inv.

susceptibility

joint background field removal + dipole inversion

• Susceptibility contrast detection/differentiation of calcified tissues

Acknowledgements

Christof Böhm

Special thanks to ...

The present work was supported by

- the European Research Council (grant agreement No 677661, ProFatMRI)
- Philips Healthcare

Anh Tu Van

