

Extending the Signal Models of the ISMRM Fat-Water toolbox: Generalized Parameter Estimation in Multi-Echo Gradient-Echo-Based Chemical Species Separation

Maximilian N. Diefenbach¹, Chunlei Liu², Dimitrios C. Karampinos¹

¹Department of Diagnostic & Interventional Radiology, Technical University of Munich, Munich, Germany ²Department of Electrical Engineering and Computer Sciences, & Helen Wills Neuroscience Institute, <u>University of California</u>, Berkeley, Berkeley, CA, United States

ISMRM Workshop Series

Declaration of Financial Interests or Relationships

Speaker Name: Dimitrios Karmapinos

Grant Support Philips Healthcare

What is needed for water—fat imaging?

Which signal model to take?

Signal model	Original signal-formula
single water component	$s_n = \varrho e^{(i\omega - R_2^*)t_n + \varphi}$
water–fat $+$ field map	$s_n = \left(W + F \sum_{p=1}^{P} \alpha_m e^{i\Delta\omega_m t_n}\right) e^{i\omega t_n}$
single- R_2^st water–fat	$s_n = \left(W + F \sum_{p=1}^{P} \alpha_m e^{i\Delta\omega_m t_n}\right) e^{(i\omega - R_2^*)t_n}$
single- R_2^st water–fat $+$ shift	$s_n = \left(W + F \sum_{p=1}^{P} \alpha_m e^{i(\Delta \omega_m + x)t_n}\right) e^{(i\omega - R_2^*)t_n}$
double- R_2^st water–fat	$s_n = \left(We^{-R_{W,2}^*} + Fe^{-R_{F,2}^*} \sum_{p=1}^P \alpha_m e^{i\Delta\omega_m t_n}\right) e^{i\omega t_n}$
fatty acid composition	$s_n = (W + a_{F_1}F_1 + a_{F_2}F_2 + a_{F_3}F_3 + a_{F_4}F_4) e^{(i\omega - R_2^*)t_n}$ $a_{F_1} = 9a_A + 6a_C + 6a_E + 2a_G + 2a_H + a_I$ $a_{F_2} = 2a_B$ $a_{F_3} = 4a_D + 2a_J$ $a_{F_4} = 2a_F + 2a_J$

Purpose:

To develop a **generalized formulation** for multi-echo gradient-echo-based chemical species separation **for all MR signal models** described by weighted sums of complex exponentials with phases linear in the echo time.

Parameter Estimation

std. WFI models

fatty acid composition models

Experimental design

Cramer-Rao analysis-based:

tissue-parameter-specific noise evaluation

TE selection

double- R_2^* model

Main advantages

Generalized **Formulation** Software Mathematical generality reuse

Software available

http://bmrr.de/software

based on the ISMRM wf toolbox

